Black Hole Information Stability – TOE-E 0.0.1
Appearance
Black Hole Information Stability– TOE-E 0.0.1
Mapping E, S, R to quantum information preservation
William Birmingham; CAIPR Collective
Subjects: Physics
- TOE-E, black hole, E S R, information stability
Abstract
Access Paper:
Paper Structure:
Parent: | TOE-E 0.0.0 |
Status: | Accepted(2025) |
DOI
🔖 Internal:
🌍 External:(pending)
🔖 Internal:
10.toe-e/0.0.1
🌍 External:(pending)
Metadata:
Domain: | Physics |
Scale: | Subatomic to cosmological |
Substrate: | Quantum fields |
E‑type: | Hawking radiation energy flux (J/s) |
S‑type: | Bekenstein–Hawking entropy (bits) |
R‑type: | Quantum state coherence (0–1) |
Timescale: | Cosmological (10^10 years) |
Conflicts: | None declared |
License: | CC BY 4.0 |
Citation:
APA:
William Birmingham; CAIPR Collective. (2025).
Black Hole Information Stability – TOE-E 0.0.1. TOE-E Archive.
(DOI pending)
▶ Export BibTeX
@article{TOEE-TOE-E-0.0.1}, title = { Black Hole Information Stability – TOE-E 0.0.1 }, author = { William Birmingham; CAIPR Collective }, year = { 2025 }, journal = { TOE-E Archive }, note = { DOI pending } }
TOE-E 0.0.1 Black Hole Information Stability TOE-E 0.0.0 Physics Accepted
Falsifiability
If information is lost without detectable R‑mediated coherence, the model fails.
Next Steps
Simulations via quantum field theory; empirical tests via telescope data (e.g., Event Horizon Telescope).